Identification and removal of laser-induced noise in photoacoustic imaging using singular value decomposition

نویسندگان

  • Emma R. Hill
  • Wenfeng Xia
  • Matthew J. Clarkson
  • Adrien E. Desjardins
چکیده

Singular value decomposition (SVD) was used to identify and remove laser-induced noise in photoacoustic images acquired with a clinical ultrasound scanner. This noise, which was prominent in the radiofrequency data acquired in parallel from multiple transducer elements, was induced by the excitation light source. It was modelled by truncating the SVD matrices so that only the first few largest singular value components were retained, and subtracted prior to image reconstruction. The dependency of the signal amplitude and the number of the largest singular value components used for noise modeling was investigated for different photoacoustic source geometries. Validation was performed with simulated data and measured noise, and with photoacoustic images acquired from the human forearm and finger in vivo using L14-5/38 and L40-8/12 linear array clinical imaging probes. The use of only one singular value component was found to be sufficient to achieve near-complete removal of laser-induced noise from reconstructed images. This method has strong potential to increase image quality for a wide range of photoacoustic imaging systems with parallel data acquisition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noise Effects on Modal Parameters Extraction of Horizontal Tailplane by Singular Value Decomposition Method Based on Output Only Modal Analysis

According to the great importance of safety in aerospace industries, identification of dynamic parameters of related equipment by experimental tests in operating conditions has been in focus. Due to the existence of noise sources in these conditions the probability of fault occurrence may increases. This study investigates the effects of noise in the process of modal parameters identification b...

متن کامل

The advantage of using a diode laser instead of a Q-switched laser in photoacoustic imaging of tissues

Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be ...

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS

Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an importa...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017